First-order nonlinear eigenvalue problems involving functions of a general oscillatory behavior

نویسندگان

چکیده

Eigenvalue problems arise in many areas of physics, from solving a classical electromagnetic problem to calculating the quantum bound states hydrogen atom. In textbooks, eigenvalue are defined for linear problems, particularly differential equations such as time-independent Schr\"odinger equations. Eigenfunctions exhibit several standard features independent form underlying As discussed Bender \emph{et al} [\href{http://dx.doi.org/10.1088/1751-8113/47/23/235204}{J.~Phys.~A 47, 235204 (2014)}], separatrices nonlinear share some these features. this sense, they can be considered eigenfunctions equations, and quantized initial conditions that give rise interpreted eigenvalues. We introduce first-order involving general class functions obtain large-eigenvalue limit by reducing it random walk on half-line. The introduced covers special Bessel Airy functions, which themselves solutions second-order For instance, case first kind, i.e., $y'(x)=J_\nu(xy)$, we show eigenvalues asymptotically grow $2^{41/42} n^{1/4}$. also discuss reciprocal gamma Riemann zeta not simple With function, $y'(x)=1/\Gamma(-xy)$, $n$th grows factorially fast $\sqrt{(1-2n)/\Gamma(r_{2n-1})}$, where $r_k$ is $k$th root digamma function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of Extremal Solutions in Fourth Order Nonlinear Eigenvalue Problems on General Domains

We examine the regularity of the extremal solution of the nonlinear eigenvalue problem ∆u = λf(u) on a general bounded domain Ω in R , with the Navier boundary condition u = ∆u = 0 on ∂Ω. Here λ is a positive parameter and f is a non-decreasing nonlinearity with f(0) = 1. We give general pointwise bounds and energy estimates which show that for any convex and superlinear nonlinearity f , the ex...

متن کامل

Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains

We examine the fourth order problem ∆u = λf(u) in Ω with ∆u = u = 0 on ∂Ω, where λ > 0 is a parameter, Ω is a bounded domain in R and where f is one of the following nonlinearities: f(u) = e, f(u) = (1 + u) or f(u) = 1 (1−u)p where p > 1. We show the regularity of all semi-stable solutions and hence of the extremal solutions, provided N < 2 + 4 √ 2 + 4 √ 2− √ 2 ≈ 10.718 when f(u) = e,

متن کامل

Domain decomposition algorithms for fourth-order nonlinear elliptic eigenvalue problems

We study domain decomposition methods for fourth-order plate problems. The well-known von K arm an equations are used as our model problem. By exploiting the symmetry of the domain, the solution of the original problem can be obtained by solving those associated reduced problems, which are defined on subdomains with appropriate boundary conditions. We show how nonoverlapping and overlapping dom...

متن کامل

Nonlinear Eigenvalue Problems

Heinrich Voss Hamburg University of Technology 115.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-2 115.2 Analytic matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-3 115.3 Variational Characterization of Eigenvalues . . . . . . . . 115-7 115.4 General Rayleigh Functionals . . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2021

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac2e29